Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.741
Filtrar
1.
Nucleic Acids Res ; 52(6): 3419-3432, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426934

RESUMO

Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.


Assuntos
Betacoronavirus , RNA Viral , Betacoronavirus/genética , Microscopia Crioeletrônica , Genoma Viral/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/ultraestrutura , SARS-CoV-2/genética
2.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 41(8): 462-467, oct. 2023. tab
Artigo em Inglês | IBECS | ID: ibc-226404

RESUMO

Introduction The onset and spread of COVID-19 pandemic has forced clinical laboratories to rapidly expand testing capacity for SARS-CoV-2. This study evaluates the clinical performance of the TMA Procleix SARS-CoV-2 assay in comparison to the RT-PCR assay Allplex™ SARS-CoV-2 for the qualitative detection of SARS-CoV-2 RNA. Methods Between November 2020 and February 2021, 610 upper-respiratory specimens received for routine SARS-CoV-2 molecular testing were prospectively collected and selected at the Hospital Universitari Vall d’Hebron and the Hospital Universitari Bellvitge in Barcelona, Spain. All samples were processed in parallel with the TMA and the RT-PCR assays, and results were compared. Discrepancies were retested by an additional RT-PCR method and the clinical history of these patients was reviewed. Results Overall, the level of concordance between both assays was 92.0% (κ, 0.772). Most discordant results (36/38, 94.7%) corresponded to samples testing positive with the TMA assay and negative with the RT-PCR method. Of these discrepant cases, most (28/36, 77.8%) were finally classified as confirmed or probable SARS-CoV-2 cases according to the discrepant analysis. Conclusion In conclusion, the TMA Procleix SARS-CoV-2 assay performed well for the qualitative detection of SARS-CoV-2 RNA in a multisite clinical setting. This novel TMA assay demonstrated a greater sensitivity in comparison to RT-PCR methods for the molecular detection of SARS-CoV-2. This higher sensitivity but also the qualitative feature of this detection of SARS-CoV-2 should be considered when making testing algorithm decisions (AU)


Introducción El inicio y la expansión de la pandemia por COVID-19 han forzado a los laboratorios clínicos a ampliar rápidamente la capacidad de detección de SARS-CoV-2. Evaluamos el rendimiento clínico del ensayo de TMA Procleix SARS-CoV-2 en comparación con el ensayo de RT-PCR Allplex™ SARS-CoV-2 para la detección cualitativa de ARN de SARS-CoV-2. Métodos Entre noviembre de 2020 y febrero de 2021 se seleccionaron prospectivamente 610 muestras del tracto respiratorio superior recibidas de rutina en el Hospital Universitario Vall d’Hebron y el Hospital Universitario de Bellvitge en Barcelona, España, para el diagnóstico molecular de SARS-CoV-2. Todas las muestras fueron procesadas en paralelo con los ensayos de TMA y RT-PCR, y se compararon los resultados. Las discrepancias se estudiaron por un método adicional de RT-PCR y se revisaron las historias clínicas de los pacientes. Resultados En general, la concordancia entre ambos ensayos fue del 92,0% (κ, 0,772). La mayoría de los casos discrepantes (36/38, 94,7%) correspondían a muestras positivas con el ensayo de TMA y negativas con el método de RT-PCR. De estos, la mayoría (28/36, 77,8%) fueron finalmente clasificados como casos confirmados o probables de SARS-CoV-2 de acuerdo al análisis de discrepantes. Conclusión El ensayo de TMA Procleix SARS-CoV-2 funcionó bien para la detección cualitativa de ARN de SARS-CoV-2 en un entorno clínico multicéntrico. Este ensayo TMA demostró una mayor sensibilidad en comparación con métodos de RT-PCR para la detección molecular de SARS-CoV-2. Esta mayor sensibilidad, pero también el carácter cualitativo de esta detección de SARS-CoV-2, se deben considerar en el diagnóstico de la infección (AU)


Assuntos
Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Coronavirus/diagnóstico , Betacoronavirus/genética , RNA Viral , Sensibilidade e Especificidade
3.
Sci China Life Sci ; 66(4): 861-874, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378474

RESUMO

Bats are reservoirs for multiple coronaviruses (CoVs). However, the phylogenetic diversity and transmission of global bat-borne CoVs remain poorly understood. Here, we performed a Bayesian phylogeographic analysis based on 3,594 bat CoV RdRp gene sequences to study the phylogenetic diversity and transmission of bat-borne CoVs and the underlying driving factors. We found that host-switching events occurred more frequently for α-CoVs than for ß-CoVs, and the latter was highly constrained by bat phylogeny. Bat species in the families Molossidae, Rhinolophidae, Miniopteridae, and Vespertilionidae had larger contributions to the cross-species transmission of bat CoVs. Regions of eastern and southern Africa, southern South America, Western Europe, and Southeast Asia were more frequently involved in cross-region transmission events of bat CoVs than other regions. Phylogenetic and geographic distances were the most important factors limiting CoV transmission. Bat taxa and global geographic hotspots associated with bat CoV phylogenetic diversity were identified, and bat species richness, mean annual temperature, global agricultural cropland, and human population density were strongly correlated with the phylogenetic diversity of bat CoVs. These findings provide insight into bat CoV evolution and ecological transmission among bat taxa. The identified hotspots of bat CoV evolution and transmission will guide early warnings of bat-borne CoV zoonotic diseases.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Filogenia , Betacoronavirus/genética , Infecções por Coronavirus/transmissão , Animais , Quirópteros , Alphacoronavirus/genética
5.
Virus Res ; 319: 198882, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35934258

RESUMO

To date, a total of seven human coronaviruses (HCoVs) have been identified, all of which are important respiratory pathogens. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has led to a global pandemic causing millions of infections and deaths. Here, we summarize the discovery and fundamental virology of HCoVs, discuss their zoonotic transmission and highlight the weak species barrier of SARS-CoV-2. We also discuss the possible origins of SARS-CoV-2 variants of concern identified to date and discuss the experimental challenges in characterizing mutations of interest and propose methods to circumvent them. As the COVID-19 treatment and prevention landscape rapidly evolves, we summarize current therapeutics and vaccines, and their implications on SARS-CoV-2 variants. Finally, we explore how interspecies transmission of SARS-CoV-2 may drive the emergence of novel strains, how disease severity may evolve and how COVID-19 will likely continue to burden healthcare systems globally.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Betacoronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Humanos , Pneumonia Viral/prevenção & controle , SARS-CoV-2/genética
6.
Viruses ; 14(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35891370

RESUMO

Coronaviruses are well known as a diverse family of viruses that affect a wide range of hosts. Since the outbreak of severe acute respiratory syndrome, a variety of bat-associated coronaviruses have been identified in many countries. However, they do not represent all the specific geographic locations of their hosts. In this study, full-length genomes representing newly identified bat coronaviruses in South Korea were obtained using an RNA sequencing approach. The analysis, based on genome structure, conserved replicase domains, spike gene, and nucleocapsid genes revealed that bat Alphacoronaviruses are from three different viral species. Among them, the newly identified B20-97 strain may represent a new putative species, closely related to PEDV. In addition, the newly-identified MERS-related coronavirus exhibited shared genomic nucleotide identities of less than 76.4% with other Merbecoviruses. Recombination analysis and multiple alignments of spike and RBD amino acid sequences suggested that this strain underwent recombination events and could possibly use hDPP4 molecules as its receptor. The bat SARS-related CoV B20-50 is unlikely to be able to use hACE2 as its receptor and lack of an open reading frame in ORF8 gene region. Our results illustrate the diversity of coronaviruses in Korean bats and their evolutionary relationships. The evolution of the bat coronaviruses related ORF8 accessory gene is also discussed.


Assuntos
Alphacoronavirus , Quirópteros , Coronaviridae , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Alphacoronavirus/genética , Animais , Betacoronavirus/genética , Coronaviridae/genética , Genoma Viral , Genômica , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
7.
Artigo em Inglês | IBECS | ID: ibc-203502

RESUMO

Introduction: SARS-CoV-2variants of concern (VOC) have been described in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Among them, the most scarce information has been obtained from the P.1 variant and more data on its global presence and about its spreading dynamics are needed.Methods: Whole genome sequencing was performed prospectively on travellers arriving from Brazil and on a random selection of SARS-CoV-2 positive cases from our population.Results: In this study we report the first SARS-CoV-2 P.1 and P.2 variants exported from Brazil to Spain. The case infected with the P.1 variant, who had only stayed in Rio de Janeiro, required hospitalisation. The two P.2 cases remained asymptomatic. A wider distribution for P.1 variant beyond the Brazilian Amazonia should be considered. The exportation of the P.2 variant, carrying the E484K mutation, deserves attention. One month after the first description of P.1 and P.2 importations from Brazil to Madrid, these variants were identified circulating in the community, in cases without a travel history, and involved in household transmissionsConclusion: Whole genome sequencing of SARS-CoV-2 positive travellers arriving from Brazil allowed us to identify the first importations of P.1 and P.2 variants to Spain and their early community transmission.


Introducción: Se han descrito «variantes de preocupación» (VOC) de SARS-CoV-2 en el Reino Unido (B.1.1.7), Sudáfrica (B.1.351) y Brasil (P.1). Entre ellas, se dispone de información más escasa para la variante P.1 y se necesitan más datos sobre su presencia global y sobre su dinámica de expansión.Métodos: Se realizó secuenciación del genoma completo de forma prospectiva de SARS-CoV-2 en viajeros procedentes de Brasil y en una selección aleatoria de casos positivos de SARS-CoV-2 de nuestra población.Resultados: En este estudio reportamos las primeras variantes de SARS-CoV-2 P.1 y P.2 exportadas desde Brasil a España. El caso infectado por la variante P.1, que solo había permanecido en Río de Janeiro, requirió hospitalización. Los 2 casos de la variante P.2 permanecieron asintomáticos. Se debe considerar una distribución más amplia para la variante P.1 más allá de la Amazonía brasileña. La exportación de la variante P.2, que porta la mutación E484K, merece asimismo atención adicional. Un mes después de la primera descripción de las importaciones de P.1 y P.2 de Brasil a Madrid, se identificaron estas variantes circulando en la comunidad, en casos sin antecedentes de viaje, e implicadas en transmisiones domiciliarias.Conclusión: La secuenciación de genoma completo de viajeros positivos para SARS-CoV-2 procedentes de Brasil nos permitió identificar las primeras importaciones de variantes P.1 y P.2 a España y su transmisión comunitaria precoz.


Assuntos
Humanos , Ciências da Saúde , Brasil/epidemiologia , Transmissão de Doença Infecciosa/prevenção & controle , Betacoronavirus/genética , Sequenciamento Completo do Genoma , Controle Sanitário de Viajantes , Epidemiologia , Doenças Transmissíveis
8.
Virology ; 568: 56-71, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134624

RESUMO

SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Uso do Códon , Códon , Evolução Molecular , Pandemias , SARS-CoV-2/genética , Betacoronavirus/classificação , Betacoronavirus/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Genômica/métodos , Humanos , Fases de Leitura Aberta , Especificidade de Órgãos , Filogenia
9.
Sci Rep ; 12(1): 2386, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149831

RESUMO

Hedgehogs are common in the majority of European countries and are known to host various pathogens, including viruses. The recent discovery of MERS-related coronaviruses (CoVs) in hedgehogs from Germany, France, the UK, China, and Italy suggests that hedgehogs may represent a wild reservoir of betacoronaviruses. This study reports the first detection and characterization of novel betacoronovirus, subgenus Merbecovirus in wild hedgehogs in Poland. The CoV RNA was detected in 10 out of 40 hedgehogs' rectal swabs and in 1 out of 18 samples of the lung. No viral RNA was identified in the duodenum and kidney. There was no significant relationship between clinical status, gender, hedgehogs' age, and coronaviral RNA detection. Phylogenetic analysis showed that CoVs detected in our study grouped together with other representatives of Hedgehog coronavirus 1 species identified in Western Europe. Our findings provide further evidence that hedgehogs are a natural reservoir of Merbecovirus. Considering the high mutation rate of CoVs and their potential for crossing interspecies barriers, the proper management of hedgehogs admitted to wildlife rehabilitation centres is needed. It cannot be excluded that merbecovirus strains detected in hedgehogs may recombine with other CoVs leading to new viruses with potential for interspecies transmission.


Assuntos
Betacoronavirus/isolamento & purificação , Ouriços/virologia , Animais , Betacoronavirus/genética , Feminino , Masculino , Filogenia , Polônia
10.
J Med Virol ; 94(4): 1257-1260, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34897750

RESUMO

The ongoing discussion about the real origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) feeds acrimonious debates. Where did SARS-CoV-2 come from? Was SARS-CoV-2 transmitted in the wild from an animal to a person before exploding in Wuhan or was it an engineered virus that escaped from research or a laboratory in Wuhan? Right now, we still don't know enough whether SARS-CoV-2 is human-made or not, and lab-leak theories remain essentially speculative. Many recent studies have pointed out several plausible scenarios. Anyhow, currently, even if suspicions by some about the possibility of lab-leak hypothesis still remain, the consensus view is that the pandemic probably started from a natural source and, to determine the real origin of the SARS-CoV-2 virus, further research is needed.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Animais , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Evolução Biológica , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Laboratórios , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
11.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34887342

RESUMO

The constant emergence of COVID-19 variants reduces the effectiveness of existing vaccines and test kits. Therefore, it is critical to identify conserved structures in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes as potential targets for variant-proof diagnostics and therapeutics. However, the algorithms to predict these conserved structures, which simultaneously fold and align multiple RNA homologs, scale at best cubically with sequence length and are thus infeasible for coronaviruses, which possess the longest genomes (∼30,000 nt) among RNA viruses. As a result, existing efforts on modeling SARS-CoV-2 structures resort to single-sequence folding as well as local folding methods with short window sizes, which inevitably neglect long-range interactions that are crucial in RNA functions. Here we present LinearTurboFold, an efficient algorithm for folding RNA homologs that scales linearly with sequence length, enabling unprecedented global structural analysis on SARS-CoV-2. Surprisingly, on a group of SARS-CoV-2 and SARS-related genomes, LinearTurboFold's purely in silico prediction not only is close to experimentally guided models for local structures, but also goes far beyond them by capturing the end-to-end pairs between 5' and 3' untranslated regions (UTRs) (∼29,800 nt apart) that match perfectly with a purely experimental work. Furthermore, LinearTurboFold identifies undiscovered conserved structures and conserved accessible regions as potential targets for designing efficient and mutation-insensitive small-molecule drugs, antisense oligonucleotides, small interfering RNAs (siRNAs), CRISPR-Cas13 guide RNAs, and RT-PCR primers. LinearTurboFold is a general technique that can also be applied to other RNA viruses and full-length genome studies and will be a useful tool in fighting the current and future pandemics.


Assuntos
Algoritmos , RNA Viral/química , SARS-CoV-2/química , Betacoronavirus/química , Betacoronavirus/genética , Sequência Conservada , Genoma Viral , Mutação , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Viral/genética , SARS-CoV-2/genética , Alinhamento de Sequência
12.
Sci Rep ; 11(1): 24145, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921180

RESUMO

Recent studies suggest that coronaviruses circulate widely in Southeast Asian bat species and that the progenitors of the SARS-Cov-2 virus could have originated in rhinolophid bats in the region. Our objective was to assess the diversity and circulation patterns of coronavirus in several bat species in Southeast Asia. We undertook monthly live-capture sessions and sampling in Cambodia over 17 months to cover all phases of the annual reproduction cycle of bats and test specifically the association between their age and CoV infection status. We additionally examined current information on the reproductive phenology of Rhinolophus and other bat species presently known to occur in mainland southeast China, Vietnam, Laos and Cambodia. Results from our longitudinal monitoring (573 bats belonging to 8 species) showed an overall proportion of positive PCR tests for CoV of 4.2% (24/573) in cave-dwelling bats from Kampot and 4.75% (22/463) in flying-foxes from Kandal. Phylogenetic analysis showed that the PCR amplicon sequences of CoVs (n = 46) obtained clustered in Alphacoronavirus and Betacoronavirus. Interestingly, Hipposideros larvatus sensu lato harbored viruses from both genera. Our results suggest an association between positive detections of coronaviruses and juvenile and immature bats in Cambodia (OR = 3.24 [1.46-7.76], p = 0.005). Since the limited data presently available from literature review indicates that reproduction is largely synchronized among rhinolophid and hipposiderid bats in our study region, particularly in its more seasonal portions (above 16° N), this may lead to seasonal patterns in CoV circulation. Overall, our study suggests that surveillance of CoV in insectivorous bat species in Southeast Asia, including SARS-CoV-related coronaviruses in rhinolophid bats, could be targeted from June to October for species exhibiting high proportions of juveniles and immatures during these months. It also highlights the need to develop long-term longitudinal surveys of bats and improve our understanding of their ecology in the region, for both biodiversity conservation and public health reasons.


Assuntos
Alphacoronavirus/genética , Betacoronavirus/genética , COVID-19/transmissão , Quirópteros/crescimento & desenvolvimento , SARS-CoV-2/genética , Alphacoronavirus/classificação , Animais , Sudeste Asiático/epidemiologia , Betacoronavirus/classificação , COVID-19/epidemiologia , COVID-19/virologia , Camboja/epidemiologia , Quirópteros/classificação , Quirópteros/virologia , Epidemias/prevenção & controle , Evolução Molecular , Genoma Viral/genética , Geografia , Humanos , Estudos Longitudinais , Masculino , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Especificidade da Espécie
13.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696405

RESUMO

Coronaviruses (CoVs) are widespread and highly diversified in wildlife and domestic mammals and can emerge as zoonotic or epizootic pathogens and consequently host shift from these reservoirs, highlighting the importance of veterinary surveillance. All genera can be found in mammals, with α and ß showing the highest frequency and diversification. The aims of this study were to review the literature for features of CoV surveillance in animals, to test widely used molecular protocols, and to identify the most effective one in terms of spectrum and sensitivity. We combined a literature review with analyses in silico and in vitro using viral strains and archive field samples. We found that most protocols defined as pan-coronavirus are strongly biased towards α- and ß-CoVs and show medium-low sensitivity. The best results were observed using our new protocol, showing LoD 100 PFU/mL for SARS-CoV-2, 50 TCID50/mL for CaCoV, 0.39 TCID50/mL for BoCoV, and 9 ± 1 log2 ×10-5 HA for IBV. The protocol successfully confirmed the positivity for a broad range of CoVs in 30/30 field samples. Our study points out that pan-CoV surveillance in mammals could be strongly improved in sensitivity and spectrum and propose the application of a new RT-PCR assay, which is able to detect CoVs from all four genera, with an optimal sensitivity for α-, ß-, and γ-.


Assuntos
Alphacoronavirus/genética , Infecções por Coronavirus/veterinária , Deltacoronavirus/genética , Gammacoronavirus/genética , SARS-CoV-2/genética , Animais , Animais Selvagens/virologia , Betacoronavirus/genética , COVID-19/veterinária , Quirópteros/virologia , Genoma Viral/genética , Humanos , Gado/virologia , Roedores/virologia
14.
Viruses ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696436

RESUMO

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


Assuntos
Alphacoronavirus/isolamento & purificação , Betacoronavirus/isolamento & purificação , Quirópteros/virologia , Genoma Viral/genética , Metagenoma/genética , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Quirópteros/genética , Biologia Computacional/métodos , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Moscou , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Análise de Sequência de DNA
15.
Sci Rep ; 11(1): 18847, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552110

RESUMO

As the SARS-CoV-2 has spread and the pandemic has dragged on, the virus continued to evolve rapidly resulting in the emergence of new highly transmissible variants that can be of public health concern. The evolutionary mechanisms that drove this rapid diversity are not well understood but neutral evolution should open the first insight. The neutral theory of evolution states that most mutations in the nucleic acid sequences are random and they can be fixed or disappear by purifying selection. Herein, we performed a neutrality test to better understand the selective pressures exerted over SARS-CoV-2 spike protein from homologue proteins of Betacoronavirus, as well as to the spikes from human clinical isolates of the virus. Specifically, Tyr and Asn have higher occurrence rates on the Receptor Binding Domain (RBD) and in the overall sequence of spike proteins of Betacoronavirus, whereas His and Arg have lower occurrence rates. The in vivo evolutionary phenomenon of SARS-CoV-2 shows that Glu, Lys, Phe, and Val have the highest probability of occurrence in the emergent viral particles. Amino acids that have higher occurrence than the expected by the neutral control, are favorable and are fixed in the sequence while the ones that have lower occurrence than expected, influence the stability and/or functionality of the protein. Our results show that most unique mutations either for SARS-CoV-2 or its variants of health concern are under selective pressures, which could be related either to the evasion of the immune system, increasing the virus' fitness or altering protein - protein interactions with host proteins. We explored the consequences of those selected mutations in the structure and protein - protein interaction with the receptor. Altogether all these forces have shaped the spike protein and the continually evolving variants.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Aminoácidos/química , Aminoácidos/genética , Enzima de Conversão de Angiotensina 2/química , Betacoronavirus/genética , Evolução Molecular , Deriva Genética , Glicosilação , Humanos , Modelos Teóricos , Mutação , Ligação Proteica/genética , Glicoproteína da Espícula de Coronavírus/química
18.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-48245

RESUMO

A Organização Mundial de Saúde (OMS) e os centros de pesquisa de todo o mundo – inclusive na Universidade Federal de Juiz de Fora (UFJF) estão investigando as mudanças constantes do novo coronavírus podem ocasionar algum impacto na eficácia das vacinas desenvolvidas, na capacidade de transmissão do Sars-CoV-2 e no desenvolvimento de quadros clínicos mais graves da Covid-19. A ciência tem se esforçado na busca diária de respostas e até o momento, provou ser seguro e aconselhável tomar qualquer uma das vacinas aprovadas pelas agências de vigilância sanitária ao redor do mundo e que, independentemente da variante do novo coronavírus, a forma de se prevenir da doença é a mesma: uso de máscara, lavagem correta das mãos com sabão ou álcool em gel 70, distanciamento social e vacina.


Assuntos
Infecções por Coronavirus , Pneumonia Viral , Betacoronavirus/genética
19.
Virol J ; 18(1): 89, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931105

RESUMO

BACKGROUND: A novel coronavirus (SARS-CoV-2) emerging has put global public health institutes on high alert. Little is known about the epidemiology and clinical characteristics of human coronaviruses infections in relation to infections with other respiratory viruses. METHODS: From February 2017 to December 2019, 3660 respiratory samples submitted to Zhejiang Children Hospital with acute respiratory symptoms were tested for four human coronaviruses RNA by a novel two-tube multiplex reverse transcription polymerase chain reaction assays. Samples were also screened for the occurrence of SARS-CoV-2 by reverse transcription-PCR analysis. RESULTS: Coronavirus RNAs were detected in 144 (3.93%) specimens: HCoV-HKU1 in 38 specimens, HCoV-NL63 in 62 specimens, HCoV-OC43 in 38 specimens and HCoV-229E in 8 specimens. Genomes for SARS-CoV-2 were absent in all specimens by RT-PCR analysis during the study period. The majority of HCoV infections occurred during fall months. No significant differences in gender, sample type, year were seen across species. 37.5 to 52.6% of coronaviruses detected were in specimens testing positive for other respiratory viruses. Phylogenic analysis identified that Zhejiang coronaviruses belong to multiple lineages of the coronaviruses circulating in other countries and areas. CONCLUSION: Common HCoVs may have annual peaks of circulation in fall months in the Zhejiang province, China. Genetic relatedness to the coronaviruses in other regions suggests further surveillance on human coronaviruses in clinical samples are clearly needed to understand their patterns of activity and role in the emergence of novel coronaviruses.


Assuntos
COVID-19/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Respiratórias/virologia , SARS-CoV-2/genética , Adolescente , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19/complicações , COVID-19/genética , COVID-19/fisiopatologia , Criança , Pré-Escolar , China/epidemiologia , Coronavirus/genética , Coronavirus/isolamento & purificação , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/isolamento & purificação , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/isolamento & purificação , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/isolamento & purificação , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , Filogenia , Infecções Respiratórias/complicações , Infecções Respiratórias/etiologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética
20.
J Med Virol ; 93(9): 5630-5634, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33934387

RESUMO

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly widespread worldwide becoming one of the major global public health issues of the last centuries. Currently, COVID-19 vaccine rollouts are finally upon us carrying the hope of herd immunity once a sufficient proportion of the population has been vaccinated or infected, as a new horizon. However, the emergence of SARS-CoV-2 variants brought concerns since, as the virus is exposed to environmental selection pressures, it can mutate and evolve, generating variants that may possess enhanced virulence. Codon usage analysis is a strategy to elucidate the evolutionary pressure of the viral genome suffered by different hosts, as possible cause of the emergence of new variants. Therefore, to get a better picture of the SARS-CoV-2 codon bias, we first identified the relative codon usage rate of all Betacoronaviruses lineages. Subsequently, we correlated putative cognate transfer ribonucleic acid (tRNAs) to reveal how those viruses adapt to hosts in relation to their preferred codon usage. Our analysis revealed seven preferred codons located in three different open reading frame which appear preferentially used by SARS-CoV-2. In addition, the tRNA adaptation analysis indicates a wide strategy of competition between the virus and mammalian as principal hosts highlighting the importance to reinforce the genomic monitoring to prompt identify any potential adaptation of the virus into new potential hosts which appear to be crucial to prevent and mitigate the pandemic.


Assuntos
Betacoronavirus/genética , Uso do Códon , Infecções por Coronavirus/virologia , Genoma Viral , Mamíferos , SARS-CoV-2/genética , Animais , COVID-19 , Vacinas contra COVID-19 , Códon , Interações Hospedeiro-Patógeno , Humanos , Mutação , Fases de Leitura Aberta , Filogenia , RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...